E-951 TARGET HARDWARE

C. C. Finfrock, G. A. Greene and H. G. Kirk E-951 Collaboration for Targetry Design Brookhaven National Laboratory

January 5, 2001

Beam Window Material Evaluations

- Prior to use of mercury targets, beam window materials need to be evaluated.
- A simple fixture is needed to allow candidate window materials to be exposed to beam.
- The proposed approach:
 - Assemble materials on a Conflat type 2.73" tee, rough pump down, valve off, and measure a leak rate.
 - Let up to air, and expose to prescribed number of beam pulses.
 - Rough down again, valve off, and compare the leak rate to previous measurement.

Beam Window Material Test Fixture

Inconel / Havar Beam Window Assembly

Mercury Target Requirements

- Generate a one cm. diameter arcing horizontal jet of mercury to provide a 10 to 15 cm interaction length with the proton beam.
- Provide an unobstructed view of the interaction zone for high speed imaging.
- Operate simply, reliably and remotely.
- Safely contain projectiles which may be generated by mercury-beam interactions
- Manage mercury vapor generation
- Mounting system to provide for easy interchange of other test targets
- Materials of construction must be compatible with mercury and survive a radiation environment.

Main Features of Pneumatic Mercury Jet Apparatus (1)

• Mercury jet containments:

- dual containment assembly for mercury containment
- external fiducial registration for quick installation and replacement
- constructed of commercially available components wherever possible

Primary containment:

- constructed out of commercial vacuum components
- may be inerted, vented to atmosphere through mercury traps
- pressure relief and liquid level sensors on mercury reservoirs
- remote pneumatic operation, no active electrical components
- interior is mercury wetted, all materials mercury compatible
- can be isolated and pressurized for leak testing
- beam windows are Inconel 718 and / or Havar

Main Features of Pneumatic Mercury Jet Apparatus (2)

- Secondary containment:
 - commercially fabricated out of welded stainless steel
 - air atmosphere, always vented to atmosphere through mercury traps
 - no active electrical components
 - interior is not mercury wetted, but all components are mercury compatible
 - interior can be manually sniffed for mercury
 - view ports are quartz or Lexan
 - approximate size: 20" wide x 20" high x 36" long

Main Features of Pneumatic Mercury Jet Apparatus (3)

• Mode of operation:

- pneumatic operation and control to provide a 5-second duration mercury jet
- two-dimensional positioning table is remotely controlled
- remote operation of jet apparatus by computer control
- minimize beam line entry requirements and radiation exposure
- mercury sniffer on hand during operation
- visual detection of mercury in secondary containment
- all components are mercury compatible
- radiation resistant materials such as poly-ether-ether-ketone valve seats, ethylene-propylene o-rings and Viton or copper flange gaskets are used
- can reset for next test remotely in minutes

Materials Considerations

Containments:

- commercially available stainless steel components for inner containment
- welded stainless steel sheet for outer containment
- Inconel-718 / Havar alloy external beam windows
- Quartz or Lexan internal view ports
- Quartz or Lexan external view ports

Valves:

- stainless steel bodies
- Poly-Ether-Ether-Ketone seats
- Ethylene-Propylene or "grafoil" flange seals
- non-fluorocarbon actuators
- pressure ratings in excess of 1000 psig

Pneumatically Actuated Ball Valve for Liquid Mercury

Mercury Jet Internal Confinement, Integral Reservoir Design

Side View of the Secondary Confinement

End View of the Secondary Confinement

Looking Into The Secondary Confinement From Above

Pneumatic Control System for Mercury Jet

Other Targets

- Carbon / Graphite Rod targets (ORNL)
 - Cylindrical solid rods up to 2.54 cm. dia. by 60 cm. long
 - Instrumented with fiber-optic strain gauges
 - Enclosed in external confinement similar to mercury jet test
- Static Mercury Target (CERN)
 - Enclosed in external confinement similar to mercury jet test
 - operates passively

Mounting System for Solid Cylindrical Targets

Placeholder for CERN passive Hg trough

Current Status

- Water jet tests are complete.
- Mercury jet target designs are substantially complete, minor detailing still underway.
- Test stand is installed in the beam line.
- Materials list with prices and quotes about 85% complete. Ready to order many components now.
- Next step is to complete the experiment safety review, and begin target construction.

SPARE SLIDES PAST THIS POINT

Pneumatic Control System for Fluid Jet

Apparatus to Simulate Hg Jet With Water

Water Arc Simulation of Mercury Jet

Superposition of Jet Trajectory and Calculation

distance (meters)

Mercury Jet Internal Confinement, Remote Reservoir Design

Overall Beam Line Layout

Schematic of Traversing Table Layout

ELEVATION SECTION FF

Detail of the Upstream Experiment Mount, Table Component

Detail of the Upstream Experiment Mount, Target Component

Detail of the Downstream Experiment Mount, Table Component

